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PC24 model.

The main goal of this research is to develop an ANN (Artificial Neural Network) model with simple
structure and ample accuracy. In the first step, an appropriate ANN model with 24 input variables is
developed using back propagation neural network by Levenberg-Marquardt algorithm to optimize the
network parameters for the prediction of phosphate, total hardness and turbidity concentration in
Batlagundu, Tamil Nadu. Subsequently, principal component analysis (PCA) is used to reduce the
number of input variables. Finally, comparison amongst the operation of ANN-PC24 and ANN-RPC
models is made. Findings indicated that the ANN-RPC models have more effective results than the ANN-

1. Introduction

Assessment of the quality and quantity of both surface and groundwater
is important in hydro-environmental management to sustain the natural
systems and safe livable environment on and under the earth’s surface.
Groundwater and surface water are fundamentally interconnected. This
interconnection should be well understood to effectively and safely
manage the precious groundwater and surface-water resources while
benefiting from them. During recent years, increasing pollution and losing
of water sources have changed exploitation policy of water and soil
resources. Groundwater is a major source of water supply in different
cities around the world and therefore several studies have highlighted
different aspects of groundwater such as, storage potential, hydrogeology,
water quality, vulnerability and sustainability and so on [1-4].
Contamination of groundwater resources either from anthropogenic
activities or from inherent aquifer material composition reduces its
supply, posing a threat to development and a challenge to water managers
and strategists. Agricultural activities may deteriorate the groundwater
quality in small to large watersheds, especially due to uncontrolled use of
fertilizer and various carcinogenic pesticides [5,6]. Variation in
groundwater quality is a function of physical and chemical parameters
that are greatly influenced by geological formations and anthropogenic
activities as well [7].

In general, the contamination of groundwater could occur from non-
point and point sources. The major contaminants linked to non-point
sources are fertilizers, heavy metals and pesticides. Heavy metals
contaminate groundwater from anthropogenic sources as well as natural
sources. Some of the major anthropogenic sources of heavy metals are
mining, fertilizers, pesticides and industrial wastes. While the effects of
most chemicals commonly found in drinking water manifest themselves
after long exposure, the effects of calcium and, in particular, those of
magnesium on the cardiovascular system are believed to reflect recent
exposures. Water quality is extremely important, because constant access
to good quality water is a condition necessary for life and economy
activities. Beside the human life and economy activities, as indicated by the
sediment and suspended particles monitoring is essential for the
sustainability of the biological resources. The turbidity of any water
sample is the reduction of transparency due to the presence of particulate
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matter such as clay or slit, finely divided organic matter, plankton and
other microscopic organisms. Measurement of turbidity reflects the
transparency of water. Therefore, it is necessary to forecast phosphate,
total hardness (Ca and Mg) and turbidity. In view of this complex
interaction, use of modeling techniques to solve this problem, is needed.
However, the problem of obtaining models that adequately represent the
dynamic behaviour of field data is not easy. Lack of good understanding
and description of the phenomena involved, the availability of reliable and
complete field data set and the estimation of the numerous parameters
involved are the major factors contributing to this problem. Beck [8) noted
that, increase in model complexity will undoubtedly increase the number
of parameters, leading to the problems of identification.

ANN (Artificial Neural Network) is an oversimplified simulation of the
human brain and is composed of simple processing units referred to as
neurons. It is able to learn and generalize from experimental data even if
they are noisy, imperfect or nonlinear in nature. This ability allows this
computational system to learn constitutive relationships of materials
directly from the result of experiments. Unlike conventional models, it
needs no prior knowledge, or any constants and/or assumptions about the
deformation characteristics of the geo materials. Other powerful
attributes of ANN models are their flexibility and adaptivity, which play
important roles in material modeling. When a new set of experimental
results cannot be reproduced by conventional models, a new constitutive
model or a set of new constitutive equations needs to be developed.
However, trained ANN models can be further trained with the new data
set to gain the required additional information needed to reproduce the
new experimental results. These features ascertain the ANN model to be
an objective model that can truly represent natural neural connections
among variables, rather than a subjective model, which assumes variables
obeying a set of predefined relations [9]. In the literature, there are also
some ANN studies aiming to predict the conditions in soil and quality of
groundwater. Das [10] used computational intelligence techniques ANN
and support vector machine to develop models to predict swelling
pressure from the inputs: natural moisture content, dry density, liquid
limit, plasticity index and clay fraction. In another study, Benerjee [11]
used ANN feed forward network based ANN model as a method to predict
the groundwater levels. Yesilnacar [12] developed an ANN model
predicting concentration of nitrate, the most common pollutant in shallow
aquifers, in groundwater of the Harran Plain. Yesilnacar [12] also
developed an ANN model predicting concentration of sulfate and SAR
value.
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In natural environment, water quality is a multivariate phenomenon, at
least as reflected in the multitude of constituents which are used to
characterize the quality of water body. Water quality is very difficult to
model because of the different interactions between pollutants and
meteorological variables. The principal component analysis (PCA) is one
of the approaches to avoid this problem and has received increasing
attention as an accepted method in environmental pattern recognition
[13-15]. The objective of this study is to use the PCA method to classify
predictor variables according to their interrelation, and to obtain
parsimonious prediction model (i.e, model that depend on as few
variables as necessary) for water quality parameters with other physico-
chemical data as predictor variables to model the water quality of the
study area. For this purpose, principal component scores of 24 physico-
chemical water quality parameters were generated and selected
appropriately as input variables in ANN models for predicting phosphate,
total hardness and turbidity concentration.

2. Experimental Methods

2.1 Study Area and Data Analysis

The study area Batlagundu is located in Dindigul district, Tamil Nadu. It
is bounded by longitude 77° 45’ 33.84” E and latitude 10° 9’ 55.80” N with
an average elevation of 320 meters (1049 feet). The main occupation of
this study area is agriculture. The sources of water supply in the area are
hand pumps, bore holes and dug wells. The precipitation which is the sole
source of ground water recharges in the study area is very low. The area is
very humid (86%) and warm with an average temperature 22 °C. In order
to achieve the research objective, samples were collected from the study
area as shown in Fig. 1. Samples were collected in polythene bottles and
analyzed for various water quality parameters as per standard procedures
[16-18]. The water quality parameters were monitored regularly during
different seasons of summer, rainy and winter over a period of two years
i.e, 2012 and 2013. A total of 150 samples for 24 water quality parameters
were used for the analysis. The parameters are temperature, pH, electrical
conductivity, turbidity, Total dissolved solids, chloride, sulphate, nitrate,
nitrite, ammonia, sodium, potassium, iron, calcium, magnesium, dissolved
oxygen, biological oxygen demand, chemical oxygen demand, phosphate,
total alkalinity, total hardness, bicarbonate, carbonate and fluoride.
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Fig. 1 Map of the study area

2.2 Principal Component Analysis

In this work, PCA was performed on the above mentioned water quality
parameters to rank their relative significance and to describe their
interrelation patterns. Chosen PC scores of the 24 water quality
parameters were used as input variables in ANN model to predict the
phosphate, total hardness and turbidity concentration.

The principal components (PCs) can be expressed as

Zij = QppXqj + QppXpj + o Qi X 1)

Where z is the component score, a is the component loading, x the
measured value of variable, i is the component number, j is the sample
number and m is the total number of variables. The PCs generated by PCA
are sometimes not readily interpreted; therefore, it is advisable to rotate
the PCs by varimax rotation. Varimax rotation ensures that each variable
is maximally correlated with only one PC and a near zero association with
the other components [19,20]. Varimax rotations applied on the PCs with
eigenvalues more than 1 are considered significant where the typical
criteria are 75-95% of total variance [21]. The rotations were carried out,
in order to obtain new groups of variables. Variables with communality
greater than 0.7 are considered, having significant factor loadings.

2.3 Artificial Neural Network

Artificial neural network models (Fig. 2) were specified by the network
topology, training and/or learning rules. These aspects have primarily
affected the network performance; with three different layers in the
network topology can be distinguished as:

1) An input layer: connecting the input information to the network.

2) Hidden layer: acting as an intermediate computational layer.

3) Output layer: producing the desired outputs.

output

Fig. 2 Architecture of neural network model

The ANN architecture for water quality prediction were decided by the
performance of the respecting networks. The training algorithm for the
whole networks utilizes the Levenberg - Marquardt Back Propagation
algorithm and three layer back-propagation ANN is used in this study. The
ANNSs were trained for both type of inputs and different number of hidden
neurons, sequentially selected to find the best performing network in the
training data. An early stopping approach also applied to the network
training. The best performance network on the training data was selected
as trained network, and featured in the water quality predictor network.
The number of input and output neurons is determined by the nature of
the problem under study. In this study, the networks were trained, tested
and validated with one hidden layer and 1 to 10 hidden neurons.

Two different types of ANN models were developed. In the first type,
prediction was performed based on the original PCs. In the second type,
scores of rotated (varimax rotation) PCs (ANN-RPCs) with eigen values
greater than 1 were selected as input. For this model, prediction of
phosphate, total hardness and turbidity concentration was performed
using two to six rotated principal components separately.

The original PCs and rotated PCs (RPCs) data sets consist of 150
observations (150 rows) and are divided into training, testing and
validating phases for prediction. The input data matrix consists of 24
water quality variables (column) and 150 observations (rows) [24x150].
Table 1 describes the data structure. The validation data is at least 10% of
the whole data set, with 75% training set and 25% testing set data [22].

Table 1 The data structure for ANN Prediction model

No. of
Observa- Input Parameters Output
tions
Input 1 Input 2 Inputs ... Input 24 Output 1
1 Obs 11 Obs 1,2 Obs13 ... Obs 1,24 011

2 Obs 21 Obs 2,2 Obs23 . Obs 2,24 021

150 0bs 150,1 Obs 1502 Obs 1503 .eeeee

Obs 150,24 O150,1

2.4 Determination of Model Performance

After the training is complete, the performance of the ANN is
determined. The verification statistics are useful in evaluating the
modeling results. The performances of the back-propagation neural
network models were based on the correlation coefficient, root mean
square error. The root-mean square is a measure of the prediction error
and is used to summarize the overall quality of the model. Lower numbers
of the root-mean square error indicate good performance of the model.
The correlation coefficient statistic evaluates the linear correlation
between the measured and computed values.
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Where Qo and Qp are observed and predicted value. M, and M, are mean of
observed and predicted values. ANN models and statistical analyses were
carried out using MATLAB 10.0.

3. Results and Discussion

Post PCA, out of the 24 principal components generated, only six PCs
with eigenvalues higher than 1 (Table 2) were selected for the ANN input
parameters. Selected PCs explained 88.55 % of the total variation.
Furthermore, communality values were high for the selected PCs, for
example, the values are 99% for Total dissolved solids, electrical
conductivity and chloride, 95% for total hardness, calcium, magnesium
and sodium, 92% for potassium and total alkalinity (Table 3). These
results further confirm the choice of the selected number of PCs (Stevens,
1986). For the first six rotated PCs (RPCs), the loadings from PCA are given
in Table 3. The highest correlations between variables are noted in bold.
Significant variables in RPC1 are Total dissolved solids, electrical
conductivity, total hardness, calcium, magnesium, sodium, potassium,
chloride and sulphate ; RPC2 are Total alkalinity, bicarbonate, carbonate,
total hardness, calcium, magnesium; RPC3 are nitrate, nitrite ,iron and
ammonia and RPC4 dissolved oxygen , biological oxygen demand,
chemical oxygen demand and pH . The only meaningful loads in RPC5 are
Temperature and nitrate and in RPC6 are Turbidity and Fluoride.

Using the original principal component scores as inputs, the best
architecture consist of a three layer network with 24 input neurons, 5
neurons in the hidden layer and one neuron in the output layer.
Considering RPC scores as inputs, the best architectures were achieved
with almost the same number of hidden neurons. Training was carried out
for a maximum 10000 iterations. Selection of the network was performed
at maximum correlation coefficient (r) and low RMSE.

Table 2 Descriptive statistics of selected original PCs with eigen values more than 1

Components PC1 PC2 PC3 PC4 PC5 PC6
Eigen value 10.089 3.582 2.661 1.587 1.249 1.156
Variability(%) 42.039 14.927 11.088 6.614 5.203 4.816
Cumulative %) 42.039 56.966 68.054 74.668 79.870 88.557

Table 3 Rotated factor loadings using six PCs

Variables RPC1 RPC2 RPC3 RPC4 RPC5 RPC6 Commu-

nalities
DO -0.225 0.007 -0.105 -0.782 0.343 -0.125 0.806
BOD 0.055 0.460 0.214 0.649 0.059 0.070 0.689
CoD 0.016 0.500 0.136 0.621 0.247 0.029 0.715
Phosphate 0.431 0.525 0.470 0.087 0.371 -0.148 0.850
Temp 0.186 0.031 -0.053 0.050 -0.905 -0.011 0.860
Turbidity 0.117 -0.265 0.222 -0.031 0.313 0.734 0.771
TDS 0.938 0.236 0.188 0.087 -0.002 0.120 0.993
EC 0.940 0.221 0.194 0.086 -0.005 0.121 0.992
pH 0.210 -0.265 0.114 0.563 0.469 -0.120 0.679
TA 0.084 0.928 0.206 0.105 -0.076 -0.004 0.927
TH 0.696 0.634 -0.107 0.039 0.064 0.228 0.955
Calcium 0.671 0.662 -0.131 0.022 0.070 0.209 0.955
Magnesium  0.720 0.592 -0.076 0.064 0.060 0.253 0.947
Sodium 0.908 0.039 0.324 0.149 -0.027 -0.021 0.954
potassium 0.825 -0.270 0.385 0.110 -0.066 -0.058 0.922
Chloride 0949 0.191 0.154 0.076 0.038 0.141 0.989
Sulphate 0.873 -0.033 0.159 0.077 -0.111 -0.096 0.815

Bicarbonate  0.076 0.931 0.202 0.100  -0.081 0.002 0.929
Carbonate 0.116 0.929 0.220 0.060 -0.050 0.000 0.930

Nitrate 0.146 0.074 0.589 0.087 0.563 0.196 0.737
Nitrite 0.221 0.440 0.663 -0.035 0.044 -0.025 0.686
Fluoride -0.098 -0.254 -0.075 -0.124 0.175 -0.668 0.572
Iron 0.225 0.218 0.804 0.177 0.011 0.132 0.794

Ammonia 0.328 0.090 0.785 0.295 0.094 0.177 0.858

3.1 ANN Phosphate Modeling

Table 4 illustrates the prediction performances of phosphate
concentration of ANN models using different combinations of PC scores as
input variables. ANN using 6 inputs performs very well as far as accuracy

is concerned for all the data sets. It is observed that the prediction
performance of the training phase is best compared to the validation and
testing phases. It is important to point out that for this model, the
cumulative percentage in explaining the variance given by these six RPCs
is 88.55%. Based on the results, it is apparent that the forecasting
performance of phosphate concentration increases with the increase in
number of input variables. The highest accuracy in predicting phosphate
concentration is given by model ANN-RPC6, which contains six RPCs with
88.5% variation explained, giving an correlation coefficient value of 0.91
(training), 0.80 (testing), and 0.84 (validation) respectively. The results
are shown in Fig.3. From table 4, it can be observed that the prediction
performance of the ANN model using original PCs (24 input PC scores) is
not significantly different from the RPC models. However, as RPC models
use fewer variables and is far less complex, the advantage over the ANN-
PC24 model is obvious.

Training: R=0.91828 Validation: R=0.84071
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Fig. 3 ANN-RPC 6 model for phosphate prediction

3.2 ANN Total Hardness Modeling

Table 5 illustrates the prediction performances of total hardness
concentration of ANN models using different combinations of PC scores as
input variables. ANN using the first 2 PCs (PC1 and PC2) performs very
well as far as accuracy is concerned for all the training, testing and
validation phases. In contrast to phosphate prediction, the above result
shows that the forecasting performance of total hardness concentration
increases with the decrease in number of input variables. The highest
accuracy in predicting total hardness concentration is given by model
ANN-RPC2, giving an correlation coefficient value of 0.9982 (training),
0.9971 (testing), and 0.9973 (validation) respectively.(Fig.4) Prediction
performance of the ANN model using original PCs (24 input PC scores)
shows significant variation from the RPC models. Accuracy and Excellency
is viewed in the case of varimax rotated PCs compared to unrotated
original PCs with a complex network structure.
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Fig. 4 ANN-RPC 2 model for total hardness prediction
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Table 4 Different ANN models for phosphate prediction

Model No. of PC Correlation coefficient (r) RMSE
Training Testing  Validation All Training Testing  Validation All
ANN-RPC2 (2 Inputs) 2 0.8427 0.7687 0.6733 0.8169 0.0132 0.0473 0.1252 0.0231
ANN-RPC3 (3 Inputs) 3 0.8944 0.5400 0.7480 0.8261 0.1083 0.1411 0.2012 0.0198
ANN-RPC4 (4 Inputs) 4 0.8723 0.7836 0.8647 0.8587 0.1414 0.1510 0.1682 0.0176
ANN-RPCS5 (5 Inputs) 5 0.8920 0.8593 0.8792 0.8818 0.1225 0.1374 0.1175 0.0157
ANN-RPC6 (6 Inputs) 6 0.9182 0.8078 0.8407 0.8915 0.0933 0.0447 0.0358 0.0134
ANN-PC24 (24 original Inputs) 24 0.9030 0.8228 0.8866 0.8876 0.0316 0.0447 0.0268 0.0165
Table 5 Different ANN models for total hardness prediction
Model No. of PC Correlation coefficient (r) RMSE
Training Testing  Validation All Training Testing  Validation All
ANN-RPC2 (2 Inputs) 2 0.9982 0.9971 0.9973 0.9979 0.0151 0.0148 0.0163 0.0154
ANN-RPC3 (3 Inputs) 3 0.9977 0.9775 0.9607 0.9856 0.1049 0.1319 0.1183 0.0168
ANN-RPC4 (4 Inputs) 4 0.8448 0.7003 0.9486 0.8361 0.2883 0.1204 0.4849 0.2908
ANN-RPCS5 (5 Inputs) 5 0.7426 0.5102 0.8087 0.7055 0.4575 0.3034 0.7503 0.3106
ANN-RPC6 (6 Inputs) 6 0.6139 0.5513 0.5395 0.5905 0.5586 0.7492 0.8205 0.6534
ANN-PC24 (24 original Inputs) 24 0.8489 0.8850 0.8286 0.8464 0.1789 0.1676 0.1162 0.1567
Table 6 Different ANN models for turbidity prediction
Model No. of PC Correlation coefficient (r) RMSE
Training Testing  Validation All Training Testing  Validation All
ANN-RPC2 (2 Inputs) 2 0.5009 0.3032 0.5723 0.4698 1.5297 1.6912 1.2961 1.3745
ANN-RPC3 (3 Inputs) 3 0.6634 0.5357 0.3799 0.6102 1.2884 1.1662 1.6031 1.5734
ANN-RPC4 (4 Inputs) 4 0.7339 0.4815 0.6657 0.6822 1.1747 1.4870 1.1662 1.2312
ANN-RPCS5 (5 Inputs) 5 0.7217 0.6058 0.5051 0.6698 1.1576 1.2369 1.1662 1.0956
ANN-RPC6 (6 Inputs) 6 0.7468 0.7567 0.5569 0.7034 1.0724 1.1269 1.1313 1.1178
ANN-PC24 (24 original Inputs) 24 0.6549 0.7479 0.7437 0.6814 1.0247 1.3491 1.6156 1.5649

3.3 ANN Turbidity Modeling

Table 6 illustrates the prediction performances turbidity concentration
of ANN models using different combinations of PC scores as input
variables. ANN using the first 2 PCs (PC1 and PC2) does not perform very
well as far as accuracy is concerned for all the training, testing and
validation phases. It is observed that the prediction performance of the
testing phase is slightly worse compared to the training and validation
phases. It is important to point out that for this model, the cumulative
percentage in explaining the variance given by these two RPCs is only
56.9%. From the table, it clearly shows that turbidity prediction
performance increases with the increase in number of input variables. The
highest accuracy in predicting turbidity is given by model ANN-RPC6,
which contains six RPCs with 88.5% variation. Fig.5 shows the correlation
coefficient value of 0.74 (training), 0.75 (testing), and 0.55 (validation)
respectively. From table 6, it can be observed that ANN -RPC6 model have
more effective results than the ANN-PC24 model.
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Fig. 5 ANN-RPC6 model for turbidity prediction

4. Conclusion

In this work, a combination of PCA and ANN is used to predict
phosphate, total hardness and turbidity based on 24 historical water
quality parameters. To obtain the latent variables as inputs into the ANN,
two different approaches were used; one based on un-rotated original PCs
and the other based on varimax rotated PCs. Using six PCs, significant
variables in RPC1 are Total dissolved solids, electrical conductivity, total
hardness, calcium, magnesium, sodium, potassium, chloride and sulphate;
RPC2 are Total alkalinity, bicarbonate, carbonate, total hardness, calcium,
magnesium; RPC3 are nitrate, nitrite, iron and ammonia and RPC4
dissolved oxygen , biological oxygen demand, chemical oxygen demand
and pH . The only meaningful loads in RPC5 are Temperature and nitrate
and in RPC6 are Turbidity and Fluoride. ANN models based on these 6 PC
scores can predict 3 parameters with acceptable accuracy (within 95%
confidence limit). Moreover, the ANN model using the 24 original PCs as
input, do not render the prediction more accurate, even with a complex
network structure. The use of rotated PC scores based models is clearly
more effective and efficient due to the elimination of collinearity and
reduction of predictor variables without losing important information.
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