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The main goal of this research is to develop an ANN (Artificial Neural Network) model with simple 
structure and ample accuracy. In the first step, an appropriate ANN model with 24 input variables is 
developed using back propagation neural network by Levenberg-Marquardt algorithm to optimize the 
network parameters for the prediction of phosphate, total hardness and turbidity concentration in 
Batlagundu, Tamil Nadu. Subsequently, principal component analysis (PCA) is used to reduce the 
number of input variables. Finally, comparison amongst the operation of ANN-PC24 and ANN-RPC 
models is made. Findings indicated that the ANN-RPC models have more effective results than the ANN-
PC24 model. 
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1. Introduction 

Assessment of the quality and quantity of both surface and groundwater 
is important in hydro-environmental management to sustain the natural 
systems and safe livable environment on and under the earth’s surface. 
Groundwater and surface water are fundamentally interconnected. This 
interconnection should be well understood to effectively and safely 
manage the precious groundwater and surface-water resources while 
benefiting from them. During recent years, increasing pollution and losing 
of water sources have changed exploitation policy of water and soil 
resources. Groundwater is a major source of water supply in different 
cities around the world and therefore several studies have highlighted 
different aspects of groundwater such as, storage potential, hydrogeology, 
water quality, vulnerability and sustainability and so on [1-4].  
Contamination of groundwater resources either from anthropogenic 
activities or from inherent aquifer material composition reduces its 
supply, posing a threat to development and a challenge to water managers 
and strategists. Agricultural activities may deteriorate the groundwater 
quality in small to large watersheds, especially due to uncontrolled use of 
fertilizer and various carcinogenic pesticides [5,6]. Variation in 
groundwater quality is a function of physical and chemical parameters 
that are greatly influenced by geological formations and anthropogenic 
activities as well [7]. 

In general, the contamination of groundwater could occur from non-
point and point sources. The major contaminants linked to non-point 
sources are fertilizers, heavy metals and pesticides. Heavy metals 
contaminate groundwater from anthropogenic sources as well as natural 
sources. Some of the major anthropogenic sources of heavy metals are 
mining, fertilizers, pesticides and industrial wastes. While the effects of 
most chemicals commonly found in drinking water manifest themselves 
after long exposure, the effects of calcium and, in particular, those of 
magnesium on the cardiovascular system are believed to reflect recent 
exposures. Water quality is extremely important, because constant access 
to good quality water is a condition necessary for life and economy 
activities. Beside the human life and economy activities, as indicated by the 
sediment and suspended particles monitoring is essential for the 
sustainability of the biological resources. The turbidity of any water 
sample is the reduction of transparency due to the presence of particulate 

matter such as clay or slit, finely divided organic matter, plankton and 
other microscopic organisms. Measurement of turbidity reflects the 
transparency of water.  Therefore, it is necessary to forecast phosphate, 
total hardness (Ca and Mg) and turbidity. In view of this complex 
interaction, use of modeling techniques to solve this problem, is needed. 
However, the problem of obtaining models that adequately represent the 
dynamic behaviour of field data is not easy. Lack of good understanding 
and description of the phenomena involved, the availability of reliable and 
complete field data set and the estimation of the numerous parameters 
involved are the major factors contributing to this problem. Beck [8) noted 
that, increase in model complexity will undoubtedly increase the number 
of parameters, leading to the problems of identification. 

ANN (Artificial Neural Network) is an oversimplified simulation of the 
human brain and is composed of simple processing units referred to as 
neurons. It is able to learn and generalize from experimental data even if 
they are noisy, imperfect or nonlinear in nature. This ability allows this 
computational system to learn constitutive relationships of materials 
directly from the result of experiments. Unlike conventional models, it 
needs no prior knowledge, or any constants and/or assumptions about the 
deformation characteristics of the geo materials. Other powerful 
attributes of ANN models are their flexibility and adaptivity, which play 
important roles in material modeling. When a new set of experimental 
results cannot be reproduced by conventional models, a new constitutive 
model or a set of new constitutive equations needs to be developed. 
However, trained ANN models can be further trained with the new data 
set to gain the required additional information needed to reproduce the 
new experimental results. These features ascertain the ANN model to be 
an objective model that can truly represent natural neural connections 
among variables, rather than a subjective model, which assumes variables 
obeying a set of predefined relations [9]. In the literature, there are also 
some ANN studies aiming to predict the conditions in soil and quality of 
groundwater. Das [10] used computational intelligence techniques ANN 
and support vector machine to develop models to predict swelling 
pressure from the inputs: natural moisture content, dry density, liquid 
limit, plasticity index and clay fraction. In another study, Benerjee [11] 
used ANN feed forward network based ANN model as a method to predict 
the groundwater levels. Yesilnacar [12] developed an ANN model 
predicting concentration of nitrate, the most common pollutant in shallow 
aquifers, in groundwater of the Harran Plain. Yesilnacar [12] also 
developed an ANN model predicting concentration of sulfate and SAR 
value. 

 
*Corresponding Author 
Email Address:   umamageswaritsr1980@gmail.com ( T.S.R. Uma Mageswari) 

 

ISSN: 2394-5311 

http://www.jacsdirectory.com/


 23 
 

 

D. Sarala Thambavani and T.S.R. Uma Mageswari / Journal of Advanced Chemical Sciences 1 (2015) 22–26                                                                         

Cite this Article as:  D. Sarala Thambavani, T.S.R. Uma Mageswari, Comparative application of ANN and PCA in modeling of ground water, J. Adv. Chem. Sci. 1 (1) (2015) 22–26. 

In natural environment, water quality is a multivariate phenomenon, at 
least as reflected in the multitude of constituents which are used to 
characterize the quality of water body. Water quality is very difficult to 
model because of the different interactions between pollutants and 
meteorological variables. The principal component analysis (PCA) is one 
of the approaches to avoid this problem and has received increasing 
attention as an accepted method in environmental pattern recognition 
[13-15]. The objective of this study is to use the PCA method to classify 
predictor variables according to their interrelation, and to obtain 
parsimonious prediction model (i.e., model that depend on as few 
variables as necessary) for water quality parameters with other physico-
chemical data as predictor variables to model the water quality of the 
study area. For this purpose, principal component scores of 24 physico-
chemical water quality parameters were generated and selected 
appropriately as input variables in ANN models for predicting phosphate, 
total hardness and turbidity concentration. 

 
2. Experimental Methods 

2.1 Study Area and Data Analysis 

The study area Batlagundu is located in Dindigul district, Tamil Nadu. It 
is bounded by longitude 770 45’ 33.84” E and latitude 100 9’ 55.80” N with 
an average elevation of 320 meters (1049 feet). The main occupation of 
this study area is agriculture. The sources of water supply in the area are 
hand pumps, bore holes and dug wells. The precipitation which is the sole 
source of ground water recharges in the study area is very low. The area is 
very humid (86%) and warm with an average temperature 22 0C. In order 
to achieve the research objective, samples were collected from the study 
area as shown in Fig. 1. Samples were collected in polythene bottles and 
analyzed for various water quality parameters as per standard procedures 
[16-18]. The water quality parameters were monitored regularly during 
different seasons of summer, rainy and winter over a period of two years 
i.e., 2012 and 2013. A total of 150 samples for 24 water quality parameters 
were used for the analysis. The parameters are temperature, pH, electrical 
conductivity, turbidity, Total dissolved solids, chloride, sulphate, nitrate, 
nitrite, ammonia, sodium, potassium, iron, calcium, magnesium, dissolved 
oxygen, biological oxygen demand, chemical oxygen demand, phosphate, 
total alkalinity, total hardness, bicarbonate, carbonate and fluoride. 
 

 
Fig. 1 Map of the study area 

 
2.2 Principal Component Analysis 

In this work, PCA was performed on the above mentioned water quality 
parameters to rank their relative significance and to describe their 
interrelation patterns. Chosen PC scores of the 24 water quality 
parameters were used as input variables in ANN model to predict the 
phosphate, total hardness and turbidity concentration. 
 
The principal components (PCs) can be expressed as 

𝑍𝑖𝑗 = 𝑎𝑖1𝑥1𝑗 + 𝑎𝑖2𝑥2𝑗 + ⋯ + 𝑎𝑖𝑚𝑥𝑚𝑗    (1) 

 
Where z is the component score, a is the component loading, x the 
measured value of variable, i is the component number, j is the sample 
number and m is the total number of variables. The PCs generated by PCA 
are sometimes not readily interpreted; therefore, it is advisable to rotate 
the PCs by varimax rotation. Varimax rotation ensures that each variable 
is maximally correlated with only one PC and a near zero association with 
the other components [19,20]. Varimax rotations applied on the PCs with 
eigenvalues more than 1 are considered significant where the typical 
criteria are 75-95% of total variance [21]. The rotations were carried out, 
in order to obtain new groups of variables. Variables with communality 
greater than 0.7 are considered, having significant factor loadings. 

2.3 Artificial Neural Network 

Artificial neural network models (Fig. 2) were specified by the network 
topology, training and/or learning rules. These aspects have primarily 
affected the network performance; with three different layers in the 
network topology can be distinguished as: 

1) An input layer: connecting the input information to the network.  
2) Hidden layer: acting as an intermediate computational layer.  
3) Output layer: producing the desired outputs. 
 

 
Fig. 2 Architecture of neural network model 

The ANN architecture for water quality prediction were decided by the 
performance of the respecting networks. The training algorithm for the 
whole networks utilizes the Levenberg - Marquardt Back Propagation 
algorithm and three layer back-propagation ANN is used in this study. The 
ANNs were trained for both type of inputs and different number of hidden 
neurons, sequentially selected to find the best performing network in the 
training data. An early stopping approach also applied to the network 
training. The best performance network on the training data was selected 
as trained network, and featured in the water quality predictor network. 
The number of input and output neurons is determined by the nature of 
the problem under study. In this study, the networks were trained, tested 
and validated with one hidden layer and 1 to 10 hidden neurons. 

Two different types of ANN models were developed. In the first type, 
prediction was performed based on the original PCs. In the second type, 
scores of rotated (varimax rotation) PCs (ANN-RPCs) with eigen values 
greater than 1 were selected as input. For this model, prediction of 
phosphate, total hardness and turbidity concentration was performed 
using two to six rotated principal components separately. 

The original PCs and rotated PCs (RPCs) data sets consist of 150 
observations (150 rows) and are divided into training, testing and 
validating phases for prediction. The input data matrix consists of 24 
water quality variables (column) and 150 observations (rows) [24×150]. 
Table 1 describes the data structure. The validation data is at least 10% of 
the whole data set, with 75% training set and 25% testing set data [22]. 

 
Table 1 The data structure for ANN Prediction model 

No. of  
Observa-

tions 
Input Parameters Output 

 Input 1 Input 2 Input 3 …… Input 24 Output 1 

1 Obs 1,1 Obs 1,2 Obs 1,3 ……. Obs 1,24 O1,1 
2 Obs 2,1 Obs 2,2 Obs 2,3 ……. Obs 2,24 O2,1 

…… 
…… 
…… 

…… 
…… 
…… 

…… 
…… 
…… 

…… 
…… 
…… 

……. 
……. 
……. 

…… 
…… 
…… 

…… 
…… 
…… 

150 Obs 150,1 Obs 150,2 Obs 150,3 ……. Obs 150,24 O150,1 
 

2.4 Determination of Model Performance 

After the training is complete, the performance of the ANN is 
determined. The verification statistics are useful in evaluating the 
modeling results. The performances of the back-propagation neural 
network models were based on the correlation coefficient, root mean 
square error. The root-mean square is a measure of the prediction error 
and is used to summarize the overall quality of the model. Lower numbers 
of the root-mean square error indicate good performance of the model. 
The correlation coefficient statistic evaluates the linear correlation 
between the measured and computed values. 
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   𝑅         =    
∑(𝑄𝑜−𝑀𝑜)(𝑄𝑝−𝑀𝑝)

√∑(𝑄𝑜−𝑀𝑜)2 ∑(𝑄𝑝−𝑀𝑝)2
   (2) 

 

𝑅𝑀𝑆𝐸 =   √
∑ (𝑄𝑜−𝑄𝑝)2𝑛

𝑖=1

𝑛
    (3) 

 

Where Qo and Qp are observed and predicted value. Mo and Mp are mean of 
observed and predicted values. ANN models and statistical analyses were 
carried out using MATLAB 10.0. 

 
3. Results and Discussion 

Post PCA, out of the 24 principal components generated, only six PCs 
with eigenvalues higher than 1 (Table 2) were selected for the ANN input 
parameters. Selected PCs explained 88.55 % of the total variation. 
Furthermore, communality values were high for the selected PCs, for 
example, the values are 99% for Total dissolved solids, electrical 
conductivity and chloride, 95% for total hardness, calcium, magnesium 
and sodium, 92% for potassium and total alkalinity (Table 3). These 
results further confirm the choice of the selected number of PCs (Stevens, 
1986). For the first six rotated PCs (RPCs), the loadings from PCA are given 
in Table 3. The highest correlations between variables are noted in bold.  
Significant variables in RPC1 are Total dissolved solids, electrical 
conductivity, total hardness, calcium, magnesium, sodium, potassium, 
chloride and sulphate ;  RPC2  are Total alkalinity, bicarbonate, carbonate, 
total hardness, calcium, magnesium;  RPC3  are nitrate, nitrite ,iron and 
ammonia and  RPC4 dissolved oxygen , biological oxygen demand, 
chemical oxygen demand and pH . The only meaningful loads in RPC5 are 
Temperature and nitrate and in RPC6 are Turbidity and Fluoride. 

Using the original principal component scores as inputs, the best 
architecture consist of a three layer network with 24 input neurons, 5 
neurons in the hidden layer and one neuron in the output layer. 
Considering RPC scores as inputs, the best architectures were achieved 
with almost the same number of hidden neurons. Training was carried out 
for a maximum 10000 iterations. Selection of the network was performed 
at maximum correlation coefficient (r) and low RMSE. 
 
Table 2 Descriptive statistics of selected original PCs with eigen values more than 1 

Components  PC1 PC2 PC3 PC4 PC5 PC6 

Eigen value 10.089 3.582 2.661 1.587 1.249 1.156 

Variability(%) 42.039 14.927 11.088 6.614 5.203 4.816 

Cumulative %) 42.039 56.966 68.054 74.668 79.870 88.557 

 

Table 3 Rotated factor loadings using six PCs 

Variables RPC1 RPC2 RPC3 RPC4 RPC5 RPC6 Commu- 
nalities 

DO -0.225 0.007 -0.105 -0.782  0.343 -0.125 0.806 

BOD 0.055 0.460 0.214 0.649  0.059  0.070 0.689 

COD 0.016 0.500 0.136 0.621  0.247  0.029 0.715 

Phosphate 0.431 0.525 0.470 0.087  0.371 -0.148 0.850 

Temp 0.186 0.031 -0.053 0.050 -0.905 -0.011 0.860 

Turbidity 0.117 -0.265 0.222 -0.031  0.313  0.734 0.771 

TDS 0.938 0.236 0.188 0.087 -0.002  0.120 0.993 

EC 0.940 0.221 0.194 0.086 -0.005  0.121 0.992 

pH 0.210 -0.265 0.114 0.563  0.469 -0.120 0.679 

TA 0.084 0.928 0.206 0.105 -0.076 -0.004 0.927 

TH 0.696 0.634 -0.107 0.039  0.064  0.228 0.955 

Calcium 0.671 0.662 -0.131 0.022  0.070  0.209 0.955 

Magnesium 0.720 0.592 -0.076 0.064  0.060  0.253 0.947 

Sodium 0.908 0.039 0.324 0.149 -0.027 -0.021 0.954 

potassium 0.825 -0.270 0.385 0.110 -0.066 -0.058 0.922 

Chloride 0.949 0.191 0.154 0.076  0.038  0.141 0.989 

Sulphate 0.873 -0.033 0.159 0.077 -0.111 -0.096 0.815 

Bicarbonate 0.076 0.931 0.202 0.100 -0.081  0.002 0.929 

Carbonate 0.116 0.929 0.220 0.060 -0.050  0.000 0.930 

Nitrate 0.146 0.074 0.589 0.087  0.563  0.196 0.737 

Nitrite 0.221 0.440 0.663 -0.035  0.044 -0.025 0.686 

Fluoride -0.098 -0.254 -0.075 -0.124  0.175 -0.668 0.572 

Iron 0.225 0.218 0.804 0.177  0.011 0.132 0.794 

Ammonia 0.328 0.090 0.785 0.295  0.094 0.177 0.858 

 

3.1 ANN Phosphate Modeling 

Table 4 illustrates the prediction performances of phosphate 
concentration of ANN models using different combinations of PC scores as 
input variables. ANN using 6 inputs performs very well as far as accuracy 

is concerned for all the data sets. It is observed that the prediction 
performance of the training phase is best compared to the validation and 
testing phases. It is important to point out that for this model, the 
cumulative percentage in explaining the variance given by these six RPCs 
is 88.55%.  Based on the results, it is apparent that the forecasting 
performance of phosphate concentration increases with the increase in 
number of input variables. The highest accuracy in predicting phosphate 
concentration is given by model ANN-RPC6, which contains six RPCs with 
88.5% variation explained, giving an correlation coefficient value of 0.91 
(training), 0.80 (testing), and 0.84 (validation) respectively. The results 
are shown in Fig.3. From table 4, it can be observed that the prediction 
performance of the ANN model using original PCs (24 input PC scores) is 
not significantly different from the RPC models. However, as RPC models 
use fewer variables and is far less complex, the advantage over the ANN-
PC24 model is obvious. 
 

 

Fig. 3  ANN-RPC 6 model for phosphate prediction 

3.2 ANN Total Hardness Modeling 

Table 5 illustrates the prediction performances of total hardness 
concentration of ANN models using different combinations of PC scores as 
input variables. ANN using the first 2 PCs (PC1 and PC2) performs very 
well as far as accuracy is concerned for all the training, testing and 
validation phases. In contrast to phosphate prediction, the above result 
shows that the forecasting performance of total hardness concentration 
increases with the decrease in number of input variables. The highest 
accuracy in predicting total hardness concentration is given by model 
ANN-RPC2, giving an correlation coefficient value of 0.9982 (training), 
0.9971 (testing), and 0.9973 (validation) respectively.(Fig.4) Prediction 
performance of the ANN model using original PCs (24 input PC scores) 
shows significant variation from the RPC models. Accuracy and Excellency 
is viewed in the case of varimax rotated PCs compared to unrotated 
original PCs with a complex network structure. 
 

 

Fig. 4  ANN-RPC 2 model for total hardness prediction 
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Table 4  Different ANN models for phosphate prediction 

Model No. of PC 
Correlation coefficient (r) RMSE 

Training Testing Validation All Training Testing Validation All 

ANN-RPC2 (2 Inputs) 2 0.8427 0.7687 0.6733 0.8169 0.0132 0.0473 0.1252 0.0231 

ANN-RPC3 (3 Inputs) 3 0.8944 0.5400 0.7480 0.8261 0.1083 0.1411 0.2012 0.0198 

ANN-RPC4 (4 Inputs) 4 0.8723 0.7836 0.8647 0.8587 0.1414 0.1510 0.1682 0.0176 

ANN-RPC5 (5 Inputs) 5 0.8920 0.8593 0.8792 0.8818 0.1225 0.1374 0.1175 0.0157 

ANN-RPC6 (6 Inputs) 6 0.9182 0.8078 0.8407 0.8915 0.0933 0.0447 0.0358 0.0134 

ANN-PC24 (24 original Inputs) 24 0.9030 0.8228 0.8866 0.8876 0.0316 0.0447 0.0268 0.0165 

 

Table 5  Different ANN models for total hardness prediction 

Model No. of PC 
Correlation coefficient (r) RMSE 

Training Testing Validation All Training Testing Validation All 

ANN-RPC2 (2 Inputs) 2 0.9982 0.9971 0.9973 0.9979 0.0151 0.0148 0.0163 0.0154 

ANN-RPC3 (3 Inputs) 3 0.9977 0.9775 0.9607 0.9856 0.1049 0.1319 0.1183 0.0168 

ANN-RPC4 (4 Inputs) 4 0.8448 0.7003 0.9486 0.8361 0.2883 0.1204 0.4849 0.2908 

ANN-RPC5 (5 Inputs) 5 0.7426 0.5102 0.8087 0.7055 0.4575 0.3034 0.7503 0.3106 

ANN-RPC6 (6 Inputs) 6 0.6139 0.5513 0.5395 0.5905 0.5586 0.7492 0.8205 0.6534 

ANN-PC24 (24 original Inputs) 24 0.8489 0.8850 0.8286 0.8464 0.1789 0.1676 0.1162 0.1567 

 

Table 6  Different ANN models for turbidity prediction 

Model No. of PC 
Correlation coefficient (r) RMSE 

Training Testing Validation All Training Testing Validation All 

ANN-RPC2 (2 Inputs) 2 0.5009 0.3032 0.5723 0.4698 1.5297 1.6912 1.2961 1.3745 

ANN-RPC3 (3 Inputs) 3 0.6634 0.5357 0.3799 0.6102 1.2884 1.1662 1.6031 1.5734 

ANN-RPC4 (4 Inputs) 4 0.7339 0.4815 0.6657 0.6822 1.1747 1.4870 1.1662 1.2312 

ANN-RPC5 (5 Inputs) 5 0.7217 0.6058 0.5051 0.6698 1.1576 1.2369 1.1662 1.0956 

ANN-RPC6 (6 Inputs) 6 0.7468 0.7567 0.5569 0.7034 1.0724 1.1269 1.1313 1.1178 

ANN-PC24 (24 original Inputs) 24 0.6549 0.7479 0.7437 0.6814 1.0247 1.3491 1.6156 1.5649 

 

3.3 ANN Turbidity Modeling 

Table 6 illustrates the prediction performances turbidity concentration 
of ANN models using different combinations of PC scores as input 
variables. ANN using the first 2 PCs (PC1 and PC2) does not perform very 
well as far as accuracy is concerned for all the training, testing and 
validation phases. It is observed that the prediction performance of the 
testing phase is slightly worse compared to the training and validation 
phases. It is important to point out that for this model, the cumulative 
percentage in explaining the variance given by these two RPCs is only 
56.9%. From the table, it clearly shows that turbidity prediction 
performance increases with the increase in number of input variables. The 
highest accuracy in predicting turbidity is given by model ANN-RPC6, 
which contains six RPCs with 88.5% variation. Fig.5 shows the correlation 
coefficient value of 0.74 (training), 0.75 (testing), and 0.55 (validation) 
respectively. From table 6, it can be observed that ANN –RPC6 model have 
more effective results than the ANN-PC24 model. 

 

 

Fig. 5 ANN-RPC6 model for turbidity prediction 

 

4. Conclusion 

In this work, a combination of PCA and ANN is used to predict 
phosphate, total hardness and turbidity based on 24 historical water 
quality parameters. To obtain the latent variables as inputs into the ANN, 
two different approaches were used; one based on un-rotated original PCs 
and the other based on varimax rotated PCs. Using six PCs, significant 
variables in  RPC1 are Total dissolved solids, electrical conductivity, total 
hardness, calcium, magnesium, sodium, potassium, chloride and sulphate;  
RPC2  are Total alkalinity, bicarbonate, carbonate, total hardness, calcium, 
magnesium;  RPC3  are nitrate, nitrite, iron and ammonia and  RPC4 
dissolved oxygen , biological oxygen demand, chemical oxygen demand 
and pH . The only meaningful loads in RPC5 are Temperature and nitrate 
and in RPC6 are Turbidity and Fluoride. ANN models based on these 6 PC 
scores can predict 3 parameters with acceptable accuracy (within 95% 
confidence limit). Moreover, the ANN model using the 24 original PCs as 
input, do not render the prediction more accurate, even with a complex 
network structure. The use of rotated PC scores based models is clearly 
more effective and efficient due to the elimination of collinearity and 
reduction of predictor variables without losing important information. 
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